The Penryn Partnership Mathematics Calculation Policy

Progression in Calculations

Addition

STEP THREE Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
STEP FOUR Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \infty^{8} \theta^{2}+$ $\rho_{a}^{\infty} \rho^{p}$ Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

Subtraction

Objective and
Strategies

STEP ONE
Taking away
ones
Use physical objects, counters, cubes
etc to show how objects can be taken
away.

STEP THREE Find the difference	Compare amounts and objects to find the difference.	Count on to find the difference. Comparison Bar Models Draw bars to find the difference between numbers. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
STEP FOUR Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.

STEP FIVE Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9.	Start at 13 . Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?

STEP SEVEN Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Children can start their formal written method by partitioning the number into clear place value columns. $\begin{array}{ccc} 7 & 28 & -582=146 \\ { }^{\prime \prime} & 7 & 1 \\ 74 & 2 \\ 5 & 8 & 2 \\ \hline 1 & 4 & 6 \\ \hline \end{array}$ Moving forward the children use a more compact method.

	Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens. Now I can take away eight tens and complete my subtraction Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.		This will lead to an understanding of subtracting any number including decimals.

Multiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract \\
\hline \begin{tabular}{l}
STEP ONE \\
Doubling
\end{tabular} \& \begin{tabular}{l}
Use practical activities to show how to \\
double 4 is 8 \\
\(4 \times 2=8\) \\
double a number.
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8
\(\square\)
\(\square\)

\square
\square
\square

\square
\end{tabular} \& Partition a number and then double each part before recombining it back together.

\hline | STEP TWO |
| :--- |
| Counting in multiples | \& Count in multiples supported by concrete objects in equal groups. \& Use a number line or pictures to continue support in counting in multiples. \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25, \\ & 30 \end{aligned}$ |

\hline
\end{tabular}

STEP THREE Repeated addition	$3+3+3$	\qquad	Write addition sentences to describe objects and pictures.
STEP FOUR Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences. \qquad 46 210 10 10 10 or 0 10 1010 of 0 To 010	 Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

STEP FIVE

Grid Method

Show the link with arrays to first introduce the grid method.

4 rows of 10 4 rows

Move on to using Base 10 to move towards a more compact method.

4 rows of

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

Calculations
4×126

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Then you have your answer

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

x	30	5
7	210	35

$\mathbf{2 1 0}+\mathbf{3 5}=\mathbf{2 4 5}$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

	10		8	
10	100		80	
3	30		24	
x	1000	300	40	2
10	10000	3000	400	20
8	8000	2400	320	16

Division

Objective and Strategies	Concrete	Pictorial	Abstract
STEP ONE Sharing objects into groups		Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$
STEP TWO Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $96 \div 3=32$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

STEP THREE
Division within
arrays
STEP FOUR
Remainder

